Curious Relations and Identities Involving the Catalan Generating Function and Numbers

نویسندگان

  • Asamoah Nkwanta
  • Akalu Tefera
چکیده

Riordan matrix methods and manipulation of various generating functions are used to find curious relations among the Catalan, central binomial, and RNA generating functions. In addition, the Wilf-Zeilberger method is used to find identities where the gamma function and Catalan numbers are expressed in terms of the Gauss hypergeometric function. As a consequence of the identities, new recurrence relations are obtained. In particular, a new recurrence relation is given for the RNA numbers. Furthermore, other representations of π and the Catalan numbers are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Identities and Formulas Involving Generalized Catalan Numbers Siu-ah Ng

A generalization of the Catalan numbers is considered. New results include binomial identities, recursive relations and a close formula for the multivariate generating function. A simple expression for the Catalan determinant is derived.

متن کامل

q-Analogs of some congruences involving Catalan numbers

We provide some variations on the Greene-Krammer's identity which involve q-Catalan numbers. Our method reveals a curious analogy between these new identities and some congruences modulo a prime.

متن کامل

Several Series Identities Involving the Catalan Numbers

In the paper, the authors discover several series identities involving the Catalan numbers, the Catalan function, the Riemanian zeta function, and the alternative Hurwitz zeta function.

متن کامل

Some Identities and a Matrix Inverse Related to the Chebyshev Polynomials of the Second Kind and the Catalan Numbers

In the paper, the authors establish two identities to express higher order derivatives and integer powers of the generating function of the Chebyshev polynomials of the second kind in terms of integer powers and higher order derivatives of the generating function of the Chebyshev polynomials of the second kind respectively, find an explicit formula and an identity for the Chebyshev polynomials ...

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013